MACHINE SCREW JACKS

Joyce/Dayton offers Machine Screw Jacks in several designs including:
- Translating
- Keyed for non-rotation
- Keyed for traveling nut (KFTN)
- Double clevis
- Trunnion

A guide for ordering is on pages 20 and 21.
MACHINE SCREW JACKS ORDERING INFORMATION

Instructions: Select a model number from this chart.

<table>
<thead>
<tr>
<th>Miniature</th>
<th>1-Ton</th>
<th>2-Ton</th>
<th>2-Ton Reverse Base</th>
<th>3-Ton</th>
<th>5-Ton</th>
<th>10-Ton</th>
<th>15-Ton</th>
<th>20-Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ250</td>
<td>WJ51</td>
<td>WJ62</td>
<td>RWJT62</td>
<td>WJT63</td>
<td>WJT65</td>
<td>WJ810</td>
<td>WJ815</td>
<td>WJ820</td>
</tr>
<tr>
<td>WJ500*</td>
<td>WJ201</td>
<td>WJ122</td>
<td>RWJT122</td>
<td>WJT123</td>
<td>WJT125</td>
<td>WJ2410</td>
<td>WJ2415</td>
<td>WJ2420</td>
</tr>
<tr>
<td>WJ1000</td>
<td></td>
<td>WJ242</td>
<td>RWJT242</td>
<td>WJT243</td>
<td>WJT245</td>
<td>WJ2510</td>
<td>WJ2515</td>
<td>WJ2520</td>
</tr>
<tr>
<td>DWJ252*</td>
<td>DWJ62*</td>
<td>DWJ122*</td>
<td>DRWJT62*</td>
<td>DWJ63*</td>
<td>DWJ123*</td>
<td>DWJ810*</td>
<td>DWJ815*</td>
<td>DWJ820*</td>
</tr>
<tr>
<td>DWJ252*</td>
<td>DWJ62*</td>
<td>DWJ122*</td>
<td>DRWJT62*</td>
<td>DWJ63*</td>
<td>DWJ123*</td>
<td>DWJ810*</td>
<td>DWJ815*</td>
<td>DWJ820*</td>
</tr>
</tbody>
</table>

Important Note: *Not self-locking, may lower under load. Brake motors or external locking systems are recommended.
D: Double Lead Screw
R: Reverse Base Jack, (only available on 2-ton and 50-ton jacks).

Sample Part Number: **WJT65U1N-18.50-STDX-STDX-B**

Machine Screw Jack Rise
Rise is travel expressed in inches and not the actual screw length.

Jack Designs

- S = Translating
- K = Keyed for Non Rotation
- N = Traveling Nut
- D = Double Clevis
- A = KFTN Trunnion*
- T = Trunnion*

* Standard trunnion mounts available on 2-ton through 20-ton jacks. (See page 173)
MACHINE SCREW JACKS SHAFT CODES

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the jack.

Screw Stops (p. 10) and Boots (pp. 170-172)
Screw stops are optional on machine screw jacks. When specified, the closed height of the jack and/or the protection tube length may be increased.
When boots are added to machine screw jacks, the closed height of the jack may be increased.

Mechanical Counters (p. 177)
CNT0=0.001” Increments
Note: Contact Joyce/Dayton for availability and options.

Hand Wheels (p. 177)
HW04=4” dia
HW06=6” dia
HW08=8” dia
HW10=10” dia Recommended for self-locking jacks only.
HW12=12” dia

Geared Potentiometers (p. 176)
POTA=0-10V (IP65)
POTB=4-20MA (IP65)
POTC=0-10V w/2 switches*
POTD=4-20MA w/2 switches*
*Optional IP65 rating available

Motors for Systems and Direct Drives (p. 185)
• All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available. Specify the appropriate motor size from the chart on the right.
• Refer to the “Additional Options” chart on the preceding page as needed.
• Brake motors (M2) are recommended for jacks that are not self-locking, and jacks with double lead screws.
• If the motor frequency will be varied to provide a “soft” start an inverter duty motor may be required.

Motors
<table>
<thead>
<tr>
<th>Size</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 HP</td>
<td>K</td>
</tr>
<tr>
<td>1/3 HP</td>
<td>A</td>
</tr>
<tr>
<td>1/2 HP</td>
<td>B</td>
</tr>
<tr>
<td>3/4 HP</td>
<td>C</td>
</tr>
<tr>
<td>1 HP</td>
<td>D</td>
</tr>
<tr>
<td>1-1/2 HP</td>
<td>E</td>
</tr>
<tr>
<td>2 HP</td>
<td>F</td>
</tr>
<tr>
<td>3 HP</td>
<td>L</td>
</tr>
<tr>
<td>5 HP</td>
<td>G</td>
</tr>
<tr>
<td>7-1/2 HP</td>
<td>H</td>
</tr>
<tr>
<td>10 HP</td>
<td>I</td>
</tr>
<tr>
<td>15 HP</td>
<td>J</td>
</tr>
</tbody>
</table>

Mechanical Limit Switches (pp. 174-175)

Models
<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS7-402</td>
<td>LT</td>
</tr>
<tr>
<td>LS8-402</td>
<td>LA</td>
</tr>
<tr>
<td>LS8-404</td>
<td>LB</td>
</tr>
<tr>
<td>LS9-502</td>
<td>LC</td>
</tr>
<tr>
<td>LS9-503</td>
<td>LD</td>
</tr>
<tr>
<td>LS9-504</td>
<td>LE</td>
</tr>
<tr>
<td>LS9-505</td>
<td>LF</td>
</tr>
<tr>
<td>LS9-506</td>
<td>LG</td>
</tr>
<tr>
<td>LS9-507</td>
<td>LH</td>
</tr>
</tbody>
</table>

Available Positions
<table>
<thead>
<tr>
<th>1</th>
<th>2*</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6*</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
</table>
| Left Side Shaft Options
| Right Side Shaft Options

• Order Example: LA13

*These positions are not standard. Contact Joyce/Dayton with your requirements.

Custom products are available • Contact Joyce/Dayton with your requirements
800-523-5204 sales@joycedayton.com joycedayton.com
MACHINE SCREW JACKS SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity</th>
<th>Screw Diameter (Inches)</th>
<th>Thread Pitch/Lead</th>
<th>Worm Gear Ratio</th>
<th>Worm Shaft Turns for 1" Travel</th>
<th>Tare Torque (Inch Lbs.)</th>
<th>Operating Torque (Inch Lbs.)</th>
<th>Efficiency Rating % Approx.</th>
<th>Screw Torque (Inch Lbs.)</th>
<th>Basic Jack Weight (Lbs.)</th>
<th>Jack Weight per Inch Travel (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ250</td>
<td>250 lbs.</td>
<td>1/2</td>
<td>125 pitch stub ACME</td>
<td>5:1</td>
<td>40</td>
<td>0.25W*</td>
<td>01.0W* @ 500 RPM</td>
<td>23.0</td>
<td>0.50W*</td>
<td>1.2</td>
<td>0.1</td>
</tr>
<tr>
<td>WJ500</td>
<td>500 lbs.</td>
<td>5/8</td>
<td>250 pitch stub ACME</td>
<td>5:1</td>
<td>20</td>
<td>0.41W*</td>
<td>0.30W* @ 500 RPM</td>
<td>27.2</td>
<td>0.79W*</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>WJ1000</td>
<td>1,000 lbs.</td>
<td>5/8</td>
<td>125 pitch stub ACME</td>
<td>5:1</td>
<td>40</td>
<td>0.30W*</td>
<td>0.21W* @ 500 RPM</td>
<td>19.9</td>
<td>0.59W*</td>
<td>1.3</td>
<td>0.1</td>
</tr>
<tr>
<td>WJ51</td>
<td>1 ton</td>
<td>3/4</td>
<td>200 pitch ACME 2C</td>
<td>5:1</td>
<td>25</td>
<td>0.38W*</td>
<td>0.26W* @ 500 RPM</td>
<td>25.0</td>
<td>0.75W*</td>
<td>6</td>
<td>0.3</td>
</tr>
<tr>
<td>WJ201</td>
<td></td>
<td></td>
<td></td>
<td>20:1</td>
<td>100</td>
<td>0.17W*</td>
<td>0.09W* @ 500 RPM</td>
<td>0.089W*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)WJ62</td>
<td>2 ton</td>
<td>1</td>
<td>250 pitch ACME 2C</td>
<td>6:1</td>
<td>24</td>
<td>0.41W*</td>
<td>0.25W* @ 500 RPM</td>
<td>24.2</td>
<td></td>
<td>15</td>
<td>0.3</td>
</tr>
<tr>
<td>(R)WJ122</td>
<td></td>
<td></td>
<td>250 pitch stub ACME</td>
<td>12:1</td>
<td>48</td>
<td>0.25W*</td>
<td>0.15W* @ 500 RPM</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)WJ242</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>96</td>
<td>0.18W*</td>
<td>0.09W* @ 500 RPM</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R)WJ252</td>
<td></td>
<td></td>
<td></td>
<td>25:1</td>
<td>100</td>
<td>0.15W*</td>
<td>0.08W* @ 500 RPM</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(R)WJ62</td>
<td></td>
<td></td>
<td>250 pitch ACME 2C</td>
<td>6:1</td>
<td>12</td>
<td>0.07W*</td>
<td>0.03W* @ 500 RPM</td>
<td>37.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(R)WJ122</td>
<td></td>
<td></td>
<td></td>
<td>12:1</td>
<td>24</td>
<td>0.035W*</td>
<td>0.02W* @ 500 RPM</td>
<td>30.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D(R)WJ242</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>48</td>
<td>0.025W*</td>
<td>0.013W* @ 500 RPM</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ63</td>
<td></td>
<td></td>
<td>250 pitch ACME 2C</td>
<td>6:1</td>
<td>24</td>
<td>0.40W*</td>
<td>0.26W* @ 500 RPM</td>
<td>24.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ123</td>
<td></td>
<td></td>
<td></td>
<td>12:1</td>
<td>48</td>
<td>0.25W*</td>
<td>0.16W* @ 500 RPM</td>
<td>22.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ243</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>96</td>
<td>0.17W*</td>
<td>0.09W* @ 500 RPM</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ253</td>
<td></td>
<td></td>
<td></td>
<td>25:1</td>
<td>100</td>
<td>0.15W*</td>
<td>0.08W* @ 500 RPM</td>
<td>17.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ63</td>
<td></td>
<td></td>
<td>250 pitch ACME 2C</td>
<td>6:1</td>
<td>12</td>
<td>0.05W*</td>
<td>0.04W* @ 500 RPM</td>
<td>33.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ123</td>
<td></td>
<td></td>
<td></td>
<td>12:1</td>
<td>24</td>
<td>0.03W*</td>
<td>0.02W* @ 500 RPM</td>
<td>30.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ243</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>48</td>
<td>0.024W*</td>
<td>0.01W* @ 500 RPM</td>
<td>25.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJT65</td>
<td></td>
<td></td>
<td>375 pitch stub ACME</td>
<td>6:1</td>
<td>16</td>
<td>0.05W*</td>
<td>0.04W* @ 300 RPM</td>
<td>23.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJT125</td>
<td></td>
<td></td>
<td></td>
<td>12:1</td>
<td>32</td>
<td>0.41W*</td>
<td>0.25W* @ 300 RPM</td>
<td>26.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJT245</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>64</td>
<td>0.25W*</td>
<td>0.15W* @ 300 RPM</td>
<td>16.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJT255</td>
<td></td>
<td></td>
<td></td>
<td>25:1</td>
<td>100</td>
<td>0.22W*</td>
<td>0.11W* @ 300 RPM</td>
<td>13.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ65</td>
<td></td>
<td></td>
<td>250 pitch ACME 2C</td>
<td>6:1</td>
<td>12</td>
<td>0.072W*</td>
<td>0.05W* @ 300 RPM</td>
<td>26.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ125</td>
<td></td>
<td></td>
<td></td>
<td>12:1</td>
<td>24</td>
<td>0.045W*</td>
<td>0.02W* @ 300 RPM</td>
<td>23.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ245</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>48</td>
<td>0.033W*</td>
<td>0.01W* @ 300 RPM</td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ810</td>
<td></td>
<td></td>
<td>500 pitch ACME 2C</td>
<td>8:1</td>
<td>16</td>
<td>0.061W*</td>
<td>0.043W* @ 200 RPM</td>
<td>21.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ2410</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>48</td>
<td>0.030W*</td>
<td>0.016W* @ 200 RPM</td>
<td>18.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WJ2510</td>
<td></td>
<td></td>
<td>250 pitch ACME 2C</td>
<td>25:1</td>
<td>100</td>
<td>0.024W*</td>
<td>0.014W* @ 200 RPM</td>
<td>11.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ810</td>
<td></td>
<td></td>
<td>333 pitch ACME 2C</td>
<td>8:1</td>
<td>12</td>
<td>0.070W*</td>
<td>0.062W* @ 200 RPM</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DWJ2410</td>
<td></td>
<td></td>
<td></td>
<td>24:1</td>
<td>36</td>
<td>0.035W*</td>
<td>0.026W* @ 200 RPM</td>
<td>25.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important Note: Series DWJ double lead screw jacks and WJ500 screw jacks are not self-locking. Brake motors or external locking systems are recommended.

(R): Reverse Base Jack.

W: Load in pounds.

Tare Torque: Initial torque to overcome seal and normal assembly drag. This value must be added to starting torque or operating torque values.

Starting Torque: Torque value required to start moving a given load (dissipates to operating torque values once the load begins moving).

Operating Torque: Torque required to continuously raise a given load at the input RPM listed.

Note: If your actual input RPM is 20% higher or lower than the listed RPM, please refer to our JAX® program to determine actual torque values at your RPM.

Screw Torque: Torque required to resist screw rotation (Translating Design Jacks) and traveling nut rotation (Keyed for Traveling Nut Design Jacks).

Lead: The distance traveled axially in one rotation of the lifting screw.

Pitch: The distance from a point on a screw thread to a corresponding point on the next thread, measured axially.

2D and 3D models available on website • Ordering information on pages 20 and 21

joycedayton.com
sales@joycedayton.com
800-523-5204
MACHINE SCREW JACKS

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Capacity</th>
<th>Screw Diameter (Inches)</th>
<th>Thread Pitch/Lead</th>
<th>Worm Gear Ratio</th>
<th>Worm Shaft Turns for 1" Travel</th>
<th>Tare Torque (Inch Lbs.)</th>
<th>Operating Torque (Inch Lbs.)</th>
<th>Efficiency Rating %</th>
<th>Screw Torque (Inch Lbs.)</th>
<th>Basic Jack Weight (Lbs.)</th>
<th>Jack Weight per Inch Travel (Lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WJ815</td>
<td>15 ton</td>
<td>2 1/4</td>
<td>.500 pitch</td>
<td>8:1</td>
<td>16</td>
<td>.069W* @ 200 RPM</td>
<td>.020W* @ 200 RPM</td>
<td>21.1</td>
<td>.210W*</td>
<td>59</td>
<td>1.4</td>
</tr>
<tr>
<td>WJ2415</td>
<td>20 ton</td>
<td>2 1/2</td>
<td>.500 pitch</td>
<td>8:1</td>
<td>16</td>
<td>.066W* @ 200 RPM</td>
<td>.021W* @ 200 RPM</td>
<td>19.6</td>
<td>.227W*</td>
<td>77</td>
<td>1.9</td>
</tr>
<tr>
<td>WJ2520</td>
<td>25 ton</td>
<td>3 3/8</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>12</td>
<td>.051W* @ 200 RPM</td>
<td>.021W* @ 200 RPM</td>
<td>16.7</td>
<td>.313W*</td>
<td>164</td>
<td>3.1</td>
</tr>
<tr>
<td>WJ2530</td>
<td>30 ton</td>
<td>3 1/2</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>12</td>
<td>.048W* @ 200 RPM</td>
<td>.023W* @ 200 RPM</td>
<td>19.3</td>
<td>.384W*</td>
<td>164</td>
<td>3.0</td>
</tr>
<tr>
<td>WJ1230</td>
<td>35 ton</td>
<td>3 3/4</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>16</td>
<td>.093W* @ 200 RPM</td>
<td>.020W* @ 200 RPM</td>
<td>17.4</td>
<td>.328W*</td>
<td>240</td>
<td>3.4</td>
</tr>
<tr>
<td>WJ330</td>
<td>40 ton</td>
<td>4 1/2</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>12</td>
<td>.059W* @ 200 RPM</td>
<td>.027W* @ 150 RPM</td>
<td>12.4</td>
<td>.380W*</td>
<td>387</td>
<td>6.1</td>
</tr>
<tr>
<td>WJ1135</td>
<td>50 ton</td>
<td>5</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>16</td>
<td>.107W* @ 150 RPM</td>
<td>.039W* @ 150 RPM</td>
<td>14.8</td>
<td>.418W*</td>
<td>610</td>
<td>6.5</td>
</tr>
<tr>
<td>WJ335</td>
<td>60 ton</td>
<td>6</td>
<td>.666 pitch</td>
<td>8:1</td>
<td>12</td>
<td>.112W* @ 90 RPM</td>
<td>.043W* @ 90 RPM</td>
<td>11.7</td>
<td>.495W*</td>
<td>1010</td>
<td>10.0</td>
</tr>
<tr>
<td>WJ12100</td>
<td>75 ton</td>
<td>7</td>
<td>1.00 pitch</td>
<td>8:1</td>
<td>12</td>
<td>.134W* @ 90 RPM</td>
<td>.046W* @ 90 RPM</td>
<td>15.7</td>
<td>.595W*</td>
<td>1350</td>
<td>12.2</td>
</tr>
<tr>
<td>WJ36100</td>
<td>100 ton</td>
<td>8</td>
<td>.750 pitch</td>
<td>8:1</td>
<td>16</td>
<td>.112W* @ 90 RPM</td>
<td>.040W* @ 90 RPM</td>
<td>11.7</td>
<td>.495W*</td>
<td>1010</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Important Note: Series DWJ double lead screw jacks and WJ500 screw jacks are not self-locking. Brake motors or external locking systems are recommended.

(R): Reverse Base Jack.

*W: Load in pounds.

Tare Torque: Initial torque to overcome seal and normal assembly drag. This value must be added to starting torque or operating torque values.

Starting Torque: Torque value required to start moving a given load (dissipates to operating torque values once the load begins moving).

Operating Torque: Torque required to continuously raise a given load at the input RPM listed.

Note: If your actual input RPM is 20% higher or lower than the listed RPM, please refer to our JAX® program to determine actual torque values at your RPM.

Screw Torque: Torque required to resist screw rotation (Translating Design Jacks) and traveling nut rotation (Keyed for Traveling Nut Design Jacks).

Lead: The distance traveled axially in one rotation of the lifting screw.

Pitch: The distance from a point on a screw thread to a corresponding point on the next thread, measured axially.

800-523-5204
sales@joycedayton.com
joycedayton.com

2D and 3D models available on website • Ordering information on pages 20 and 21

The horizontal portion of each line represents the jack’s maximum dynamic capacity. Under static conditions, these lines can be exceeded. Please contact factory for assistance.

Machine Screw Jack Column Loading Chart

Screw Length (inches)

The horizontal portion of each line represents the jack’s maximum dynamic capacity. Under static conditions, these lines can be exceeded. Please contact factory for assistance.
MACHINE SCREW JACKS

250 POUND - 1/2" SCREW

Material Notes: Housing and protection tube are aluminum. Lifting screw is cold drawn steel (CDS), Input shaft (worm) is 416 S.S.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

500 POUND - 5/8" SCREW

WJ 500

Upright

1/16 x 45° CHAMFER

1 23/32

3/8

1.005 995

11/32

RISE + 7/16

Ø27/32

1/2

3/8

TYPE 1

PLAIN END

1/2-20 UNF-2A CHAMFER

1/8 x 45° CHAMFER

1/16 x 45° CHAMFER

1 1/2

4

5/16

3/8

2 3/8

4

3 3/4

3 3/4

TYPE 2

LOAD PAD

TYPE 3

THREADED END

TYPE 4

MALE CLEVIS END

END CONDITIONS (SHOWN AT MINIMUM CLOSED DIMENSIONS)

Upright traveling nut

9/32 (4) HOLES EQ. SP. ON Ø1 3/4 B.C.

Ø1

9/32 (4) HOLES EQ. SP. ON Ø1 1/2 B.C.

Ø2 1/4

Risen + 4 1/2

2 3/8

3/8

7/8

2 1/4

2 3/8

7/8

3/8

Inverted traveling nut

1/8 X 1/16 X 3/4 LG. KEYWAY BOTH ENDS

Ø9/32 (2) HOLES Ø5/8 SPOTFACE

1 1/8

1 1/8

4 1/2

2 1/4

1 5/8

4 1/2

2 1/4

1/8 X 1/16 X 3/4 LG. KEYWAY BOTH ENDS

Material Notes: Housing and protection tube are aluminum. Lifting screw is 304 S.S. Input shaft (worm) is 416 S.S.

Note: Drawings are artist’s conception - not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

1000 POUND - 5/8" SCREW

WJ 1000

Material Notes: Housing and protection tube are aluminum. Lifting screw is 304 S.S. Input shaft (worm) is 416 S.S.

Note: Drawings are artist's conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

1 TON - 3/4" SCREW

WJ 51 / WJ 201

Upright

Inverted

Typical Plan View

End Conditions (shown at minimum closed dimensions)

Material Notes: Housing and protection tube are aluminum. Lifting screw is cold drawn steel (CDS). Input shaft (worm) is CDS.

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
Inverted keyed

Typical Plan View

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

29
MACHINE SCREW JACKS

2 TON REVERSE BASE - 1" SCREW

RWJT 62 / DRWJ 62
RWJT 122 / DRWJ 122
RWJT 242 / DRWJ 242
RWJT 252

Upright

Inverted

Upright traveling nut

Inverted traveling nut

Double Clevis

Inverted keyed

Typical Plan View*

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

Ideal for DD motor mounts or for large diameter couplings.

*Typical Plan View

Type 1: Plain End

Type 2: Load Pad

Type 3: Threaded End

Type 4: Male Clevis End

Typical Plan View*

Right Side

Left Side

Base of Jack

Bushing

30
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice. Minimum closed dimensions do not apply to upright keyed jacks.
MACHINE SCREW JACKS

5 TON - 1 1/2” SCREW

WJT 65 / DWJ 65
WJT 125 / DWJ 125
WJT 245 / DWJ 245
WJT 255

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

25 TON - 3 3/8" SCREW

WJ 1125 / DWJ 1125
WJ 3225 / DWJ 3225

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

35 TON - 3 3/4" SCREW

WJ 1135
WJ 3235

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

50 TON REVERSE BASE - 4 1/2° SCREW

RWJT 1150
RWJT 3250

Typical Plan View

Right Side

Left Side

Inverted

Inverted keyed

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW JACKS

75 TON - 5" SCREW

WJ 1175
WJ 3275

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

800-523-5204
sales@joycedayton.com
joycedayton.com

2D and 3D models available on website • Ordering information on pages 20 and 21
MACHINE SCREW JACKS

100 TON - 6" SCREW

WJ 12100
WJ 36100

Upright

- Ø6,005 (5,997)
- 6 1/2 (BOLTS) Ø6 B.C.
- **TOP OF JACK**
- 11 5/8
- 13 3/8
- **RISE + 5/16**

Upright keyed

- Ø6
- 4.250
- 4.245
- 1/2 X 45° CHAMFER
- Ø2 25/32
- 1/2-12 UN 2A THREAD

Upright traveling nut

- Ø8
- 5,000
- 4,998
- 1 1/16 (8) HOLES ON Ø10 3/4 B.C.
- 5
- 3
- 9
- **RISE + 31 1/2**

Inverted

- **RISE - 3/8**
- **BASE OF JACK**
- Ø7 3/8

Inverted traveling nut

- **RISE + 19 1/2**

Typical Plan View

- **RISE + 5/16**
- **END CONDITIONS (SHOWN AT MINIMUM CLOSED DIMENSIONS)**

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice. Minimum closed dimensions do not apply to upright keyed jacks.
Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice. Minimum closed dimensions do not apply to upright keyed jacks.
MACHINE SCREW JACKS

250 TON - 9” SCREW

WJ 50250

Upright

3/4 (8 BOLTS)
Ø9 BOLT CIRCLE

18 7/8

9 1/2

2 1/2

Ø11 3/4

TOP OF JACK

RISE + 1/8

Ø22 1/2

4

28 1/2

TYPE 2 LOAD PAD

END CONDITION (SHOWN AT MINIMUM CLOSED DIMENSION)

Upright keyed

26 1/4

RISE + 1/8

Inverted

Ø11 3/4

RISE + 1/8

Ø10.999
10.977

BASE OF JACK

BUSHING

2 3/4

11 3/4

Inverted keyed

26 1/4

RISE + 3/8

3/4 X 3/8 X 5 LG.
KEYWAY BOTH ENDS
Ø2 3/4 (6) HOLES

3.000
Ø2.998
BOTH ENDS

Typical Plan View

Right Side

Left Side

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice. Minimum closed dimensions do not apply to upright keyed jacks.
Joyce machine screw ComDRIVEs® combine a machine screw jack, motor and gear reducer into a single compact unit. ComDRIVEs are available in 2-ton through 30-ton capacities. They provide travel speeds up to 35.1 inches per minute. ComDRIVEs with single lead screws (CD) are self-locking; those with double lead screws (DCD) may require a brake motor or external locking device to hold position.

Four standard end conditions are available and ComDRIVEs can be fitted with protective boots. Limit switches, anti-backlash devices, and other options are also available.

ComDRIVE Benefits:
- Can power an entire jacking system.
- Reduces the number of components that must be specified.
- Simplifies design.
- Reduces installation costs with only a single plate needed to mount the jack body.
- Reduces the number of couplings and shafts required in multi-jack systems.
- Standard 230/460 volt, 3-phase, 60 hertz motor included.

ComDRIVEs can be specified without the motor. The reducer flange accepts standard NEMA motor frame sizes.

Joyce/Dayton can customize ComDRIVEs to meet your specifications. Ask about larger size ComDRIVEs.

Joyce/Dayton offers Machine Screw ComDRIVEs in several designs including:
- Translating
- Keyed for non-rotation
- Keyed for traveling nut (KFTN)
- Double clevis
- Trunnion mount

A guide for ordering is on pages 46 and 47.
Instructions: Select a model number from this chart.

<table>
<thead>
<tr>
<th>2-Ton</th>
<th>3-Ton</th>
<th>5-Ton</th>
<th>10-Ton</th>
<th>15-Ton</th>
<th>20-Ton</th>
<th>25-Ton</th>
<th>30-Ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD62</td>
<td>CD122</td>
<td>CD63</td>
<td>CD123</td>
<td>CD65</td>
<td>CD125</td>
<td>CD810</td>
<td>CD815</td>
</tr>
<tr>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
<td>CD242</td>
</tr>
<tr>
<td>DCD62*</td>
<td>DCD122*</td>
<td>DCD63*</td>
<td>DCD123*</td>
<td>DCD65*</td>
<td>DCD125*</td>
<td>DCD810*</td>
<td>DCD815*</td>
</tr>
<tr>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
<td>DCD242*</td>
</tr>
</tbody>
</table>

Important Note: *Not self-locking, may lower under load. Brake motors or external locking systems are recommended.

DCD: Double lead screw.

(For 25:1 ratio, contact Joyce/Dayton.)

Sample Part Number: **CD65U2S-18.50-P1AB-STDX-B**

Jack Configuration

- U = Upright
- I = Inverted

End Conditions

- 1 = T1 (plain end)
- 2 = T2 (load pad)
- 3 = T3 (threaded end)
- 4 = T4 (male clevis)

ComDRIVE® Rise

Rise is travel expressed in inches and not the actual screw length. When companion jacks are ordered with the ComDRIVE®, their screws are lengthened to match the ComDRIVE®.

Jack Designs

- S = Translating
- K = Keyed for Non Rotation
- N = Traveling Nut
- D = Double Clevis
- A = KFTN Trunnion*
- T = Trunnion*

*Standard trunnion mounts available on 2-ton through 20-ton jacks. (See page 173)
MACHINE SCREW ComDRIVE® SHAFT CODES

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the ComDRIVE®.

Screw Stops (p. 10) and Boots (pp. 170-172)
Extending and retracting screw stops are standard on ComDRIVEs. When boots are added to ComDRIVEs, the closed height of the unit may be increased.

Mechanical Counters (p. 177)
CNT0=0.001" Increments
Note: Contact Joyce/Dayton for availability and options.

Geared Potentiometers (p. 176)
hyth A=0-10V (IP65)
POVB=4-20MA (IP65)
POVC=0-10V w/2 switches* *Optional IP65 rating available
POVD=4-20MA w/2 switches* *Optional IP65 rating available

Encoders and Electronic Limit Switches
ENCX=Encoder (p. 178)
ELS2=2 Position Electronic Switch
ELS4=4 Position Electronic Switch
ELS6=6 Position Electronic Switch

ComDRIVE Reducers (pp. 49-57)
Ordering Example: P2AC Motor code from chart at right

Mounting Positions
Code P1 P2 P3 P4
Left Side Shaft Options
Right Side Shaft Options

Ratio
5:1 Code A
7.5:1 Code B
10:1 Code C

Motors
Size Code
1/4 HP K
1/3 HP A
1/2 HP B
3/4 HP C
1 HP D
1-1/2 HP E
2 HP F
3 HP L
5 HP G
7-1/2 HP H
10 HP I
15 HP J

All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available including international voltages, and single phase AC. Specify the appropriate motor size from the chart above. Refer to the “Additional Options” chart on the preceding page as needed. Brake motors are required for ball screw ComDRIVEs®. Contact Joyce/Dayton for other options.

Mechanical Limit Switches (pp. 174-175)
Ordering Example: LA13

Models
Model Code
LS7-402 LT
LS8-402 LA
LS8-404 LB
LS9-502 LC
LS9-503 LD
LS9-504 LE
LS9-505 LF
LS9-506 LG
LS9-507 LH

Available Positions

Left Side Shaft Options
Right Side Shaft Options

* 2, 3, 5, 10, 15, and 20 ton ComDRIVEs are available with positions #1, #3, and #5.
* 25 and 30 ton ComDRIVEs are available with positions #1, #4, #7 and #8.
* These positions are not standard. Contact Joyce/Dayton with your requirements.

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the ComDRIVE®.

Screw Stops (p. 10) and Boots (pp. 170-172)
Extending and retracting screw stops are standard on ComDRIVEs. When boots are added to ComDRIVEs, the closed height of the unit may be increased.

Mechanical Counters (p. 177)
CNT0=0.001" Increments
Note: Contact Joyce/Dayton for availability and options.

Geared Potentiometers (p. 176)

Encoders and Electronic Limit Switches

ComDRIVE Reducers (pp. 49-57)
Ordering Example: P2AC Motor code from chart at right

Mounting Positions

Ratio

Motors

All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available including international voltages, and single phase AC. Specify the appropriate motor size from the chart above. Refer to the “Additional Options” chart on the preceding page as needed. Brake motors are required for ball screw ComDRIVEs®. Contact Joyce/Dayton for other options.

Mechanical Limit Switches (pp. 174-175)
Ordering Example: LA13

Models

Available Positions

Left Side Shaft Options
Right Side Shaft Options

* 2, 3, 5, 10, 15, and 20 ton ComDRIVEs are available with positions #1, #3, and #5.
* 25 and 30 ton ComDRIVEs are available with positions #1, #4, #7 and #8.
* These positions are not standard. Contact Joyce/Dayton with your requirements.

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the ComDRIVE®.

Screw Stops (p. 10) and Boots (pp. 170-172)
Extending and retracting screw stops are standard on ComDRIVEs. When boots are added to ComDRIVEs, the closed height of the unit may be increased.

Mechanical Counters (p. 177)
CNT0=0.001" Increments
Note: Contact Joyce/Dayton for availability and options.

Geared Potentiometers (p. 176)

Encoders and Electronic Limit Switches

ComDRIVE Reducers (pp. 49-57)
Ordering Example: P2AC Motor code from chart at right

Mounting Positions

Ratio

Motors

All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available including international voltages, and single phase AC. Specify the appropriate motor size from the chart above. Refer to the “Additional Options” chart on the preceding page as needed. Brake motors are required for ball screw ComDRIVEs®. Contact Joyce/Dayton for other options.

Mechanical Limit Switches (pp. 174-175)
Ordering Example: LA13

Models

Available Positions

Left Side Shaft Options
Right Side Shaft Options

* 2, 3, 5, 10, 15, and 20 ton ComDRIVEs are available with positions #1, #3, and #5.
* 25 and 30 ton ComDRIVEs are available with positions #1, #4, #7 and #8.
* These positions are not standard. Contact Joyce/Dayton with your requirements.

Instructions: Select the appropriate shaft codes for both right and left hand shafts. One shaft code must be specified for each side of the ComDRIVE®.

Screw Stops (p. 10) and Boots (pp. 170-172)
Extending and retracting screw stops are standard on ComDRIVEs. When boots are added to ComDRIVEs, the closed height of the unit may be increased.

Mechanical Counters (p. 177)
CNT0=0.001" Increments
Note: Contact Joyce/Dayton for availability and options.

Geared Potentiometers (p. 176)

Encoders and Electronic Limit Switches

ComDRIVE Reducers (pp. 49-57)
Ordering Example: P2AC Motor code from chart at right

Mounting Positions

Ratio

Motors

All standard motors are 3-phase, 208-230/460 VAC or 230/460 VAC. Other motor options are available including international voltages, and single phase AC. Specify the appropriate motor size from the chart above. Refer to the “Additional Options” chart on the preceding page as needed. Brake motors are required for ball screw ComDRIVEs®. Contact Joyce/Dayton for other options.

Mechanical Limit Switches (pp. 174-175)
Ordering Example: LA13

Models

Available Positions

Left Side Shaft Options
Right Side Shaft Options

* 2, 3, 5, 10, 15, and 20 ton ComDRIVEs are available with positions #1, #3, and #5.
* 25 and 30 ton ComDRIVEs are available with positions #1, #4, #7 and #8.
* These positions are not standard. Contact Joyce/Dayton with your requirements.

The horizontal portion of each line represents the jack's maximum dynamic capacity. Under static conditions, these lines can be exceeded. Please contact factory for assistance.
MACHINE SCREW ComDRiVEs® SPECIFICATIONS

<table>
<thead>
<tr>
<th>2 Ton Model Number</th>
<th>CD62</th>
<th>CD122</th>
<th>CD242</th>
<th>DCD62</th>
<th>DCD122</th>
<th>DCD242</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>7 1/2</td>
<td>10</td>
<td>5</td>
<td>7 1/2</td>
<td>10</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>13.88</td>
<td>8.90</td>
<td>7.04</td>
<td>6.94</td>
<td>4.75</td>
<td>3.47</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 1/2 HP</td>
<td>2.875</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
<td>4.000</td>
</tr>
<tr>
<td>3/4 HP</td>
<td>4,000</td>
<td>3,060</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
<td>4,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Ton Model Number</th>
<th>CD63</th>
<th>CD123</th>
<th>CD243</th>
<th>DCD63</th>
<th>DCD123</th>
<th>DCD243</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>7 1/2</td>
<td>10</td>
<td>5</td>
<td>7 1/2</td>
<td>10</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>13.88</td>
<td>9.50</td>
<td>7.04</td>
<td>6.94</td>
<td>4.75</td>
<td>3.47</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 1/2 HP</td>
<td>2.920</td>
<td>4.085</td>
<td>5.380</td>
<td>5.235</td>
<td>6.000</td>
</tr>
<tr>
<td>3/4 HP</td>
<td>4,430</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Ton Model Number</th>
<th>CD65</th>
<th>CD125</th>
<th>CD245</th>
<th>DCD65</th>
<th>DCD125</th>
<th>DCD245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.81</td>
<td>10.56</td>
<td>5.28</td>
<td>2.64</td>
<td>27.75</td>
<td>14.08</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 HP</td>
<td>3,760</td>
<td>6,980</td>
<td>10,000</td>
<td>10,000</td>
<td>6,045</td>
</tr>
<tr>
<td>1 1/2 HP</td>
<td>5,755</td>
<td>6,085</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 HP</td>
<td>7,750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10 Ton Model Number</th>
<th>CD810</th>
<th>CD2410</th>
<th>DCD810</th>
<th>DCD2410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.81</td>
<td>10.56</td>
<td>6.94</td>
<td>3.52</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 HP</td>
<td>3,680</td>
<td>7,070</td>
<td>9,000</td>
</tr>
<tr>
<td>1 1/2 HP</td>
<td>5,760</td>
<td>14,090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 HP</td>
<td>7,840</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 HP</td>
<td>12,150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 HP</td>
<td>20,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15 Ton Model Number</th>
<th>CD815</th>
<th>CD2415</th>
<th>DCD815</th>
<th>DCD2415</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.81</td>
<td>10.56</td>
<td>6.94</td>
<td>3.52</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 HP</td>
<td>3,140</td>
<td>6,200</td>
<td>7,535</td>
</tr>
<tr>
<td>1 1/2 HP</td>
<td>5,035</td>
<td>12,085</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 HP</td>
<td>6,925</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 HP</td>
<td>10,850</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 HP</td>
<td>18,515</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20 Ton Model Number</th>
<th>CD820</th>
<th>CD2420</th>
<th>DCD820</th>
<th>DCD2420</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.81</td>
<td>10.56</td>
<td>6.94</td>
<td>3.52</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>1 HP</td>
<td>2,715</td>
<td>5,570</td>
<td>6,520</td>
</tr>
<tr>
<td>1 1/2 HP</td>
<td>4,475</td>
<td>10,745</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 HP</td>
<td>6,235</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 HP</td>
<td>9,880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 HP</td>
<td>17,000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>25 Ton Model Number</th>
<th>CD1125</th>
<th>CD3225</th>
<th>DCD1125</th>
<th>DCD3225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.79</td>
<td>10.55</td>
<td>6.93</td>
<td>3.52</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>3 HP</td>
<td>9,050</td>
<td>17,165</td>
<td>20,390</td>
</tr>
<tr>
<td>7 1/2 HP</td>
<td>15,700</td>
<td>29,420</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 HP</td>
<td>32,025</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 HP</td>
<td>49,410</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>30 Ton Model Number</th>
<th>CD1130</th>
<th>CD3230</th>
<th>DCD1130</th>
<th>DCD3230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducer Ratio</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Travel Speed IPM</td>
<td>20.82</td>
<td>10.57</td>
<td>6.94</td>
<td>3.52</td>
</tr>
<tr>
<td>Lifting Capacity, Lbs.</td>
<td>3 HP</td>
<td>9,435</td>
<td>17,540</td>
<td>21,260</td>
</tr>
<tr>
<td>5 HP</td>
<td>16,100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 1/2 HP</td>
<td>24,335</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 HP</td>
<td>33,040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 HP</td>
<td>49,845</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Important Note: DCD models may lower under load. Brake motors or external locking systems are recommended.
MACHINE SCREW ComDRIVEs®

2 TON - 1" SCREW

CD 62 / DCD 62
CD 122 / DCD 122
CD 242 / DCD 242

Upright

- Ø 1 5/32
- 1 1/16
- 4 1/8
- 6 7/16
- 7 1/2
- RISE + 13/16
- Ø 3/8

Upright traveling nut

- Ø 1/2
- 1 1/16
- 4 1/8
- RISE + 8 5/8

Inverted traveling nut

- Ø 1 3/4
- 3 3/4
- 1 1/2
- RISE + 5 1/8

Inverted

- Ø 1 7/32
- 3 3/4
- 2 5/8
- 5/16
- RISE + 9/16

Typical Plan View

- 1/8 x 1/16 x 1 3/16
- LO, KEYWAY
- 1 3/16
- 3/8
- 2 1/2
- 2 13/32
- 2 27/32
- 3 3/8
- 2 15/16
- 2 3/8
- 3 7/16
- 12 31/32
- 3 1/2

Note: For lifting capacities see page 49

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW ComDRIVEs

3 TDN - 1" SCREW

CD 63 / DCD 63
CD 123 / DCD 123
CD 243 / DCD 243

Drawings are artist's conception — not for certification; dimensions are subject to change without notice.

2D and 3D models available on website • Ordering information on pages 46 and 47
MACHINE SCREW ComDRIVEs®

5 TON - 1 1/2” SCREW

CD 65 / DCD 65
CD 125 / DCD 125
CD 245 / DCD 245

Upright

Upright traveling nut

Inverted traveling nut

Inverted

CD 65 / DCD 65
CD 125 / DCD 125
CD 245 / DCD 245

Typical Plan View

Left Side

Right Side

NOTE: FOR LIFTING CAPACITIES SEE PAGE 49

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW ComDRIVEs®

10 TON - 2° SCREW

CD 810 / DCD 810
CD 2410 / DCD 2410

Upright

Upright traveling nut

Inverted traveling nut

Inverted

REDUCER DIMENSIONS

<table>
<thead>
<tr>
<th>HP</th>
<th>1 1/2</th>
<th>2</th>
<th>3 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>8 11/32</td>
<td>8 23/32</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>11 21/32</td>
<td>13 17/32</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1 3/4</td>
<td>2 5/8</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3 8/4</td>
<td>4 7/16</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>8 7/16</td>
<td>11 11/16</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2 3/4</td>
<td>3 7/8</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>4 15/32</td>
<td>4 15/32</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3 1/16</td>
<td>5 8/4</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>4 15/16</td>
<td>5 3/4</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>3 11/16</td>
<td>4 8/4</td>
<td></td>
</tr>
</tbody>
</table>

Typical Plan View

Left Side

Right Side

NOTE: FOR LIFTING CAPACITIES SEE PAGE 49

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.
MACHINE SCREW ComDRIVEs®

20 TON - 2 1/2" SCREW

CD 820 / DCD 820
CD 2420 / DCD 2420

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

Typical Plan View

Left Side

Right Side

Reducer Shown Rotated 180°

FROM PLAN VIEW

Typical Plan View

HP: DIM.
1 1-1/2 2 3 4 5/8 5

HP: DIM.
1 1-1/2 2 3 4 5/8 5

20 TON - 2 1/2" SCREW

CD 820 / DCD 820
CD 2420 / DCD 2420

2D and 3D models available on website • Ordering information on pages 46 and 47

sales@joycedayton.com joycedayton.com

55
MACHINE SCREW ComDRIVEs®

25 TON - 3 3/8" SCREW

CD 1125 / DCD 1125
CD 3225 / DCD 3225

Upright

Upright traveling nut

Inverted traveling nut

Inverted

REDUCER DIMENSIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>CD/DCC 1125</th>
<th>CD/DCC 3225</th>
<th>CD/DCC 1125</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATIO</td>
<td>5:1</td>
<td>5:1</td>
<td>5:1</td>
</tr>
<tr>
<td>HP</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>DIM.</td>
<td>7/8</td>
<td>7/8</td>
<td>7/8</td>
</tr>
<tr>
<td>HP</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>DIM.</td>
<td>9 1/16</td>
<td>9 1/16</td>
<td>9 1/16</td>
</tr>
<tr>
<td>HP</td>
<td>7/16</td>
<td>7/16</td>
<td>7/16</td>
</tr>
<tr>
<td>DIM.</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>HP</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>DIM.</td>
<td>12 3/8</td>
<td>12 3/8</td>
<td>12 3/8</td>
</tr>
</tbody>
</table>

Typical Plan View

Rise + 2 5/8

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

joycedayton.com sales@joycedayton.com 800-523-5204

CD 1125 / DCD 1125
CD 3225 / DCD 3225

2D and 3D models available on website • Ordering information on pages 46 and 47
MACHINE SCREW ComDRIVEs®

30 TON - 3 1/2" SCREW

CD 1130 / DCD 1130
CD 3230 / DCD 3230

Upright

Upright traveling nut

Inverted traveling nut

Inverted

Reduction Dimensions

Model	HP	DIM.	CD/DDC 1130	CD/DDC 3230	CD/DDC 1130	CD/DDC 3230
A | 9 17/32 | 3 | 17 3/8 | 19 1/2 | 10 | 16 5/8
B | 13 1/32 | 5 | 18 3/4 | 15 1/4 | 12 | 18 1/2
C | 2 5/8 | 7 1/2 | 12 7/16 | 7 1/4 | 5 1/4 | 8 1/16
D | 4 7/16 | 10 | 15 1/4 | 9 5/16 | 7 1/4 | 10 5/16
E | 11 9/16 | 15 | 18 1/2 | 13 1/2 | 12 7/16 | 14 1/4
F | 3 9/16 | 15 1/4 | 18 1/2 | 12 7/16 | 12 7/16 | 14 1/4
G | 5 1/2 | 15 1/4 | 18 1/2 | 12 7/16 | 12 7/16 | 14 1/4
H | 6 1/2 | 15 1/4 | 18 1/2 | 12 7/16 | 12 7/16 | 14 1/4

Note: Drawings are artist’s conception — not for certification; dimensions are subject to change without notice.

Left Side

Right Side

Typical Plan View

End conditions shown at minimum closed dimensions

Type 1: Plain End

Type 2: Load Pad

Type 3: Threaded End

Type 4: Male Clevis End

Reducer shown rotated 180° from Plan View

800-523-5204
sales@joycedayton.com
joycedayton.com

2D and 3D models available on website • Ordering information on pages 46 and 47

CD 1130 / DCD 1130
CD 3230 / DCD 3230